منابع مشابه
Illustrative Study on Linear Differential Equations and Matrix Polynomials
The objective of this paper is to study the theoretical analysis of linear differential-algebraic equations (DAEs) of higher order as well as the regularity and singularity of matrix polynomials. Some invariants and condensed forms under appropriate equivalent transformations are established for systems of linear higher-order DAEs with constant and variable coefficients. Inductively, based on c...
متن کاملRemarks on a Matrix Transformation for Linear Differential Equations
The remarks of this note are concerned with a result on transformations stated below as Theorem A, and are two-fold in nature: firstly, there are comments on the relation of this theorem to results of Perron [3] and Diliberto [l; 2], in the hope of correcting a misunderstanding that has arisen in this regard; secondly, there are remarks stressing two general properties of admissible transformat...
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملJacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations
This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product. The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations which appear in various fields of science such as physics and engineering. The Operational matr...
متن کاملApproximately $n$-order linear differential equations
We prove the generalized Hyers--Ulam stability of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1971
ISSN: 0022-247X
DOI: 10.1016/0022-247x(71)90202-2